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Overview

For an m × n matrix A, consider the Moore-Penrose1 (MP) equations

AXA = A (MP1)

XAX = X (MP2)

(AX )∗ = AX (MP3)

(XA)∗ = XA. (MP4)

We shall discuss the advantages of looking for “solutions (X )” that
statisfy some of the MP-equations.

1The idea of a generalized inverse of a singular matrix goes back to E.H. Moore in a
paper published in 1920. He investigated the idea of a “general reciprocal” of a matrix
again in a paper in 1935. Independently, R. Penrose rediscovered Moore’s idea in 1955.
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Why Moore’s work was unknown in 1955?
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Notation

We introduce some notations.

Let A{1} = {G : AGA = A}, A{2} = {H : HAH = H}, and so forth.

For example, A{1, 2} = A{1} ∩ A{2}. That is, a {1, 2}-inverse of A is a
matrix that satisfies (MP1) and (MP2). Evidently we have the inclusions

A{1, 2, 3, 4} ⊆ A{1, 2, 3} ⊆ A{1, 2} ⊆ A{1}.

Of course, many other chains are also possible.

Even though the results can be proved over an arbitrary field, we deal with
complex matrices. The set of complex m × n matrices will be denoted by
Cm×n. We denote the range of A by R(A) and the null space of A by
N(A). The conjugate transpose of A is denoted by A∗. O and I represent
the zero and the identity matrices respectively in appropriate orders.
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Outline of the talk

Given an m × n complex matrix A, we discuss properties, results and
existence of the following inverses.

{1}-inverses of A.

{2}-inverses of A.

{1, 2}-inverses of A.

{1, 3}-inverses of A.

{1, 4}-inverses of A.

{1, 2, 3, 4}-inverse of A.
We shall prove that {1, 2, 3, 4}-inverse of A is unique ; called the
Moore-Penrose inverse of A and denoted by A†.
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Given an m × n complex matrix A, we now discuss the

{1}-inverses of A.

{1}-inverses are the “equation solvers.”
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Matrix equation : Ax = b

Let A ∈ Cm×n. Then a natural question is when we can solve

Ax = b for x ∈ Cn, given b ∈ Cm. (1)

If A is a square matrix (m = n) and A has an inverse, then (1) has a
(unique) solution x = A−1b.

This gives a complete answer if A is invertible.
However, A may be a square matrix that is not invertible, or A may be
m × n with m 6= n.
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When A is not invertible, what happens?

If A is not invertible, then

(a) equation (1) may have no solutions (that is, b may not be in
R(A)), and

(b) if there are solutions, then there may be many different solutions.

Questions :

1. Given b, is the system Ax = b solvable?

2. If Ax = b is solvable for a given b, how to find all possible solutions
of Ax = b?

Answers to these questions can be found from the notion of a {1}-inverse
of A. It is also called as a generalized inverse A.
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{1}-inverse

Definition 1.

If A is an m × n matrix, then G is a {1}-inverse of A if G is an n ×m
matrix with

AGA = A. (2)

If A−1 exists in the usual sense, then G = A−1. This justifies the term
generalized inverse.

We will see later that every matrix A has at least one {1}-inverse of
A.

However, unless A is n × n and A is invertible, there are many different
{1}-inverses G , so that G is not unique. We shall see that {1}-inverses are
unique if we impose more conditions on G .
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{1}-inverse

The idea of a generalized inverse can be found in the book by Baer
[1952]2.

Baer’s idea was later developed by Sheffield [1958] in a paper 3.

An immediate consequence of the relation AGA = A is that

AGAG = AG and GAGA = GA.

Thus both AGm×m and GAn×n are idempotent matrices.

2Reinhold Baer, Linear Algebra and Projective Geometry, Academic Press, Inc., New
York, (1952).

3R.D.Sheffield, A General Theory For Linear Systems, AMM, February, (1958),
109-111.
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Idempotent Matrix

A square matrix P that satisfies P2 = P is called an idempotent matrix.
If P is an idempotent matrix, then P = P2 implies Py = P(Py) and
Pz = z for all z = Py in the range of P. That is, if P is n × n, P moves
any x ∈ Cn into R(P) and then keeps it at the same place.

Let x ∈ Cn. Then x = Px + (x − Px) = y + z satisfies
Py = P(Px) = Px = y and Pz = P(x − Px) = 0. Since
Px = P(y + z) = y , we can say that P projects Cn onto its range
V (= R(P)) along the space W = {x : Px = 0}(= N(P)).

Each idempotent P on Cn decomposes Cn as the direct sum,
Cn = R(P) + N(P), and vice-versa.

Each projecton P (idempotent and P = P∗) on Cn decomposes Cn as
the orthogonal direct sum, Cn = R(P)⊕ N(P), and vice-versa.
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The two idempotents AG and GA appearing in the next result are useful
to show how {1}-inverses are used to solve matrix equations.

Theorem 1.

Let A be an m× n matrix and assume that G is a {1}-inverse of A. Then,
for any fixed y ∈ Cm,

(i) the equation Ax = b (x ∈ Cn) has a solution (the system of linear
equations Ax = b is solvable) iff AGb = b (that is, iff Gb is a solution
of Ax = b, or b ∈ R(AG ) = R(A)).

(ii) If a solution exists, they every solution is of the form

x = Gb + (I− GA)z

where z is an arbitrary element in Cn. LA-3(P-1)T-1
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Example 2.

Let A =

(
1 2
3 6

)
. Set G =

(
1 0
0 0

)
, then AGA = A.

Also AG =

[
1 0
3 0

]
,GA =

[
1 2
0 0

]
and I − GA =

[
0 −2
0 1

]
.

Ax = b has a solution iff b ∈ R(A) = R(AG ) = span

{[
1
3

]}
. By the

Theorem 1, if b = c

(
1
3

)
, then any solution of Ax = b is exactly of the

form:

x =Gc

(
1
3

)
+ (I − GA)

(
z1

z2

)
=c

(
1
0

)
+ z2

(
−2

1

)
, for arbitrary z2.
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Solving matrix equation using {1}-inverses

In fact, Theorem (1) can be proved for the matrix equation

AXB = C

where A ∈ Cm×n, X ∈ Cn×p, B ∈ Cp×q and, necessarily, C ∈ Cm×q.

Here A,B,C are given and we are to solve for X .

Theorem 2.

Let AXB = C be as above. Then this equation has a solution iff there
exist an Ag ∈ A{1} and a Bg ∈ B{1} such that AAgCBgB = C (the
consistency condition).
If solutions exist, they are all of the form

X = AgCBg + W − AgAWBBg ,

where W is arbitrary in Cn×p, for some Ag ∈ A{1} and Bg ∈ B{1}.
LA-3(P-5)T-4
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Solving matrix equation using {1}-inverses

Corollary 3.

Consider the special case AXA = A.This equation always has solutions
since the consistency condition

AAgAAgA = A holds true for any Ag ∈ A{1}.

Moreover, A{1} = {X : X = AgAAg + W − AgAWAAg}, where W is
arbitrary and Ag is some {1}-inverse of A. LA-3(P-7)C-5

Corollary 4.

Consider the matrix equation AX = C , A ∈ Cm×n, X ∈ Cn×p, and
C ∈ Cm×p. This equation is solvable iff AAgC = C for some Ag ∈ A{1}
and then the general solution is

X = AgC + (I− AgA)W ,

where W is arbitrary and Ag is some {1}-inverse of A.
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Solving matrix equation using {1}-inverses

Corollary 5.

Consider the matrix equation XB = C where X ∈ Cn×p, B ∈ Cp×q, and
C ∈ Cn×q. This equation is solvable iff CBgB = C for some Bg ∈ B{1}
and then the general solution is X = CBg + W (I− BBg ), where W is
arbitrary.

Corollary 6.

Consider the matrix equation AX = O, where A ∈ Cm×n and X ∈ Cn×p.
Then this equation always has solutions since the consistency condition
evidently holds for any {1}-inverse of A. The solutions are of the form
X = (I− AgA)W , where W is arbitrary and Ag is some {1}-inverse of A.
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Solving matrix equation using {1}-inverses

Corollary 7.

Consider the matrix equation XB = O. This equation always has solutions
since the consistency condition evidently holds. The solutions are of the
form X = W (I− BBg ), where W is arbitrary and Bg is some {1}-inverse
of B.

Corollary 8.

Consider a system of linear equations Ax = b, where A ∈ Cm×n,
x ∈ Cn×1, and b ∈ Cm×1. Then this system is solvable iff AAgb = b for
any Ag ∈ A{1} and the solutions are all of the form

x = Agb + (I− AgA)w ,

where w ∈ Cn×1 is arbitrary and Ag is some {1}-inverse of A.

P. Sam Johnson Introduction to Moore-Penrose Inverse 17/110



Solving matrix equation using {1}-inverses

We recall that for a system of linear equations Ax = b, A−1, if it exists,
has the property that A−1b is a solution for every choice of b. It turns out
that the {1}-inverses of A generalize this property for arbitrary A.

Theorem 3.

Consider the system of linear equations Ax = b, where A ∈ Cm×n. Then
Gb is a solution of this system for every b ∈ R(A) iff G ∈ A{1}. LA-3(P-8)T-6

As Campbell and Meyer put it, the “equation solving” generalized inverses
of A are exactly the {1}-inverses of A.
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Generating {1}-inverses

Next, we give a way of generating {1}-inverses of a given matrix. First,
we need the following.

Theorem 4.

If S and T are invertible matrices and G is a {1}-inverse of A, then
T−1GS−1 is a {1}-inverse of SAT (TGS is a {1}-inverse of S−1AT−1).
Moreover, every {1}-inverse of SAT is of this form. LA-3(P-8)T-7
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Finding {1}-inverses of a given matrix

Theorem 5 (ABCD Theorem).

Let A be an m × n matrix with rank(A) = r . Then, after a suitable
rearrangement of rows and columns, A can be written in partitioned form
as

A =

(
a b
c d

)
(3)

where a is an r × r invertible matrix. In that case d = ca−1b, so that

A =

(
a b
c ca−1b

)
. (4)

Note that a, b, c , d are matrices, not numbers. LA-3(P-2)R-2
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Observations

1. Some of the entries b,c,d in (3) may be empty, in which case they do
not appear, for example if m = n and A is invertible.

2. (4) can also be written

A =

(
Ir

ca−1

)(
a b

)
=

(
a
c

)
a−1

(
a b

)
=

(
a
c

)(
Ir a−1b

)
.

This can be viewed as a generalization of the representation A = uvT

for an outer product of two vectors u, v .
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Finding {1}-inverses of a given matrix

Theorem 6.

Let A =

(
a b
c d

)
=

(
a b
c ca−1b

)
be an m × n matrix with r = rank(A)

where a is an invertible r × r matrix, as in Theorem 5.
Let

G =

(
a−1 O
O O

)
(5)

where the Os in (5) represent matrices of zeroes of dimension sufficient to
make G an n ×m matrix. Then G is a {1}-inverse of A. LA-3(P-5)T-3

Two idempotents in this case are

AG =

(
Ir O

ca−1 O

)
and GA =

(
Ir a−1b
O O

)
.
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The above theorem says that Ax = b =

(
b1

b2

)
can be solved for b1 ∈ Cr ,

b2 ∈ Cm−r iff

AGb =

(
b1

ca−1b1

)
=

(
b1

b2

)
= b.

That is, Ax = b =

(
b1

b2

)
can be solved for b1 ∈ Cr , b2 ∈ Cm−r iff

b2 = ca−1b1. In that case, the general solution of Ax = b for x ∈ Cn is

x =

(
x1

x2

)
= Gb + (Im − GA)z

=

(
a−1 O
O O

)(
b1

b2

)
+

(
O −a−1b
O Im−r

)(
z1

z2

)
=

(
a−1y1

O

)
+

(
−a−1bz2

z2

)
for arbitrary z2 ∈ Cm−r .
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If rank(A) = r < min{m, n}, we have infinitely many
{1}-inverses.

Remark 9.

Let A =

(
a b
c d

)
=

(
a b
c ca−1b

)
be an m × n matrix with r = rank(A)

where A is an invertible r × r matrix. Then A has at least one {1}-inverse

G of the form G =

(
a−1 O
O O

)
. Since often many different linearly

independent set of r rows can be permuted to the upper r rows and many
different linearly independent sets of r columns can be permuted into the
first r column positions, a matrix A with rank(A) = r < min{m, n} can
have many different {1}-inverses of this form.
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Rank Normal Form

Theorem 7.

Any matrix A ∈ Cm×n is equivalent to a unique matrix of the form

Ir if m = n = r ,[
Ir O
O O

]
if m > r , n > r ,

[
Ir

... O
]

if m = r < n,

 Ir
. . .
O

 if m > r = n

called the rank normal form of A and denoted by RNF (A).
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Rank Normal Form

Theorem 8.

Let A be an m × n matrix of rank r . Then there exist two invertible
matrices S (of size m ×m) and T (of size n × n) such that

SAT =

[
Ir O
O O

]
.

Example 9.

Consider A =

1 2 3 4
2 4 6 7
1 2 3 6

.

RNF (A) =

1 0 0 0
0 1 0 0
0 0 0 0

 =

−7 4 0
2 −1 0
−5 2 1

A

1 0 −2 −3
0 0 1 0
0 1 0 0

 .
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Finding {1}-inverses of a given matrix

Theorem 10 (Bose).

If A ∈ Cm×n
r , there exist invertible matrices S and T with SAT =

[
Ir O
O O

]
(Rank Normal Form).

A matrix G is a {1}-inverse of A iff G = TNS , where N =

[
Ir Y
X W

]
where X ,Y , and W are arbitrary matrices of approximate size. LA-3(P-9)T-8
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The Hermite Echelon Form

We will approach {1}-inverses using the Hermite echelon form. First, we
shall see what is Hermite echelon form and some properties of it.

There is another useful way to reduce a matrix, name in honor of the
French mathematician Charles Hermite, that is very close to the RREF.
However, it is only defined for square matrices. Statisticians have known
about this for some time.

Definition 11 (Hermite echelon form).

A matrix H in Cn×n in (upper) Hermite echelon form iff

1. H is upper triangular.

2. The diagonal of H consists only of zeros and ones.

3. If a row has a zero on the diagonal, then every element of that row is
zero.

4. If a row has a 1 on the diagonal, then every other element in the
column containing that 1 is zero.
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The Hermite Echelon Form

Algorithm for finding HEF (A) (Hermite Echelon Form of A) is described
as follows:

1. First we use elementary row operations to produce RREF (A) (Row
Reduced Echelon Form of A).

2. Then permute the rows of RREF (A) until each first non-zero element
of each nonzero row is a diagonal element.

3. The resulting matrix is in Hermite echelon form.

4. Use elementary row operations to produce

[A | I]→ [HEF (A) | S ].

5. Then SA = HEF (A).
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The Hermite Echelon Form

Example 12.

Consider A =

3 6 9
1 2 5
2 4 10

.

RREF (A) =

−5/6 −3/2 0
−1/6 1/2 0

0 −1/2 1/4

3 6 9
1 2 5
2 4 10

 =

1 2 0
0 0 1
0 0 0

 .
To set Hermite echelon form, simply permute the second and third rows.

HEF (A) =

−5/6 −3/2 0
0 −1/2 1/4
−1/6 1/2 0

3 6 9
1 2 5
2 4 10

 =

1 2 0
0 0 0
0 0 1

 .

P. Sam Johnson Introduction to Moore-Penrose Inverse 30/110



The Hermite Echelon Form : Interesting Facts

1. A matrix in Hermite echelon form must be idempotent (A2 = A).

2. Every matrix A ∈ Cn×n can be brought into Hermite echelon form by
using elemetary row operations.

3. For any A ∈ Cn×n, there exists a invertible matrix S such that SA is
in Hermite echelon form.

4. The Hermite echelon form of a matrix is unique.

5. Let A,B ∈ Cn×n. Then HEF (A) = HEF (B).

6. For any A ∈ Cn×n and S ∈ Cn×n invertible, HEF (SA) = HEF (A) iff
R(A∗) = R(B∗). In other words, row equivalent matrices have the
same Hermite echelon form.
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The Hermite Echelon Form : Interesting Facts

Hermite Echelon form of square matrices helps to generate {1}-inverses,
indeed invertible ones.

Theorem 13 (Constructing {1}-inverse using Hermite echelon
form).

Let A ∈ Cn×n (square) and S be invertible such that SA = HEF (A). Then
S is a {1}-inverse of A.
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{1}-inverse of a product of two matrices

In 1975, Robert E. Hartwig published a paper where he proposed a formula
for the {1}-inverse of a product of two matrices. we present this next.

Theorem 14 (Hartwig, 1975).

For conformal matrices A and B,

(AB)g = BgAg − Bg (I− AgA)
[
(I− BBg )(I− AgA)

]g
(I− BBg )Ag .
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Properties of A{1}

1. If G1,G2 ∈ A{1} for some matrix A, then show that

λG1 + (1− λ)G2 ∈ A{1}, 0 ≤ λ ≤ 1.

In other words, prove that A{1} is an affine set.

2. Suppose G1,G2, . . . ,Gk are in A{1} and λ1, λ2, . . . , λk are scalars
that sum to 1. Prove that

λ1G1 + λ2G2 + . . .+ λkGk is in A{1}.

3. Is it true that any linear combination of {1}-inverses of a matrix A is
again a {1}-inverse of A?

4. Let S and T be invertible matrices. Then show that T−1AgS−1 is a
{1}-inverse of SAT for any Ag ∈ A{1}.

5. Prove that R(B) ⊆ R(A) iff AAgB = B for any Ag ∈ A{1}.
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Properties of A{1}

1. If G ∈ A{1}, then prove that GA and AG are both idempotent
matrices that have the same rank as A. What direct sum
decompositions do they generate?

2. If G ∈ A{1}, then prove that
(a) rank(A) = rank(AG ) = rank(GA) = trace(AG ) ≤ rank(G ).
(b) Show that rank(I− AG ) = m − rank(A) and

rank(I− GA) = n − rank(A).
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Properties of A{1}

1. Let A ∈ Cn×n and H = HEF (A) (Hermite Echelon Form of A). Prove
A is idempotent if and only if H is a {1}-inverse of A.

2. If G is a {1}-inverse of A, prove that GAG is also a {1}-inverse of A
and has the same rank as A.

3. Show that it is always possible to construct a {1}-inverse of
A ∈ Cm×n

r that has rank = min{m, n}. In particular, prove that every
square matrix has an invertible {1}-inverse.

4. What is On×n{1}?
What is In{1}?
Let Eij be the m × n-matrix with all entries zero except that the (i , j)
entry has a one. What is Eij{1}?

5. Find a {1}-inverse for


1 0 2 3
0 1 4 5
0 0 0 0
0 0 0 0

.
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Properties of A{1}

1. Show that A ∈ Cm×n
r can have a {1}-inverse of any rank between r

and min{m, n}. [Hint: rank

[
Ir O
O D

]
= r + rank(D).]

2. Prove that any square invertible matrix has a unique {1}-inverse.

3. If G ∈ A{1}, then show that G ∗ ∈ A∗{1}.
4. If G ∈ A{1} and λ ∈ C, then show that λ+G ∈ (λA){1}, where

λ+ =

{
0, if λ = 0

λ−1, if λ 6= 0
.
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Properties of A{1}

1. If G ∈ A{1}, then prove that rank(G ) ≥ rank(A).

2. If G ∈ A{1}, then prove that rank(G ) = rank(A) iff G ∈ A{2}.
3. Let G ∈ A{1}. Prove that R(AG ) = R(A), N(AG ) = N(A), and

R((GA)∗) = R(A∗).

4. Let G ∈ A{1}. Prove that
(a) GA = I iff r = n iff G is a left inverse of A iff A has a full column rank.
(b) AG = I iff r = m iff G is a right inverse of A iff A has a full row rank.

5. Suppose G ∈ A{1} and v ∈ N(A). Prove that
G1 = [g1| . . . |gj + v | . . . |gm] ∈ A{1}.

6. Find matrices G and A such that G ∈ A{1} but A /∈ G{1}.
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Given an m × n complex matrix A, we now discuss the

{2}-inverses of A.
(A is a {1}-inverse of “{2}-inverse of A.” )
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{2}-inverse

The problem of finding 2-inverses is a bit more challenging than that of
describing {1}-inverses because it is a “quadratic” problem in the
unknowns.

Let us look at the 2× 2 case. Given A =

[
a b
c d

]
, find X =

[
x y
u v

]
such

that XAX = X . This amounts to solving the following equations for
x , y , u and v

x = x2a + ycx + xbu + ydu

y = xay + y2c + xbv + ydv

u = uax + vcx + u2b + vdu

v = uay + vcy + ubv + v2d

which are quadratic in the unknowns. Recall that equations solving for
{1}-inverses are linear in the unknowns.
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Generating {2}-inverses

Theorem 15.

Let A ∈ Cm×n and suppose S and T are invertible matrices of appropriate
size.
Also suppose X is a {2}-inverse of A. Then T−1XS−1 is a {2}-inverse of
SAT . Moreover, every {2}-inverse of SAT is of this form.

We will approach {2}-inverses using the rank normal form.
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Constructing {2}-inverses using “rank normal form”

Theorem 16 (Bailey, 2002).

Let A ∈ Cm×n
r . Suppose RNF (A) = SAT =

[
Ir O
O O

]
for appropriate

invertible matrices S and T .
A matrix X is a {2}-inverse of A if and only if X = TRS , where

R =

[
M Y
W WY

]
where M2 = M,MY = Y ,WM = W .
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Given an m × n complex matrix A, we now discuss the

{1, 2}-inverses of A.

(reflexive generalized inverses of A)

P. Sam Johnson Introduction to Moore-Penrose Inverse 43/110



{1,2}-inverses

C.R. Rao in 1955 made use of a generalized inverse that satisfied (MP1)
and (MP2). This type of inverse is sometimes called a reflexive
generalized inverse.

We can describe the general form of {1, 2}-inverses as we did with
{1}-inverses. It is interesting to see that extra ingredient that is needed.
We take the constructive approach as usual.

Theorem 17.

Let A ∈ Cm×n. There are matrices S and T with SAT =

[
Ir O
O O

]
.

A matrix G is a {1, 2}-inverse of A if and only if G = TNS , where

N =

[
Ir Y
X XY

]
, where X and Y are arbitrary of appropriate size.

LA-3(P-12)T-10
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Properties of {1,2}-inverses

1. Suppose G is a {1}-inverse of A. Prove that G is a {1, 2}-inverse of
A iff rank(G ) = rank(A). That is, the rank r 2-inverses of A are
exactly the {1, 2}-inverses of A.

2. Prove that G ∈ A{1, 2} iff G = G1AG2, where G1,G2 ∈ A{1}.
3. Prove that G = E (HAE )−1H belongs to A{2}, where H and E are

selected judiciously so that HAE is invertible.

4. Suppose A and B are {1, 2}-inverses of each other. Prove that AB is
the projector onto R(A) along N(B) and BA is the projector of N(B)
along N(A).

5. Prove that G ∈ A{1, 2} iff there exist S and T invertible with

G = S

[
Ir O
O O

]
T and SAT = S

[
Ir B
O O

]
.
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Given an m × n complex matrix A, we now discuss the

{1, 3}-inverses of A.
(least-squares generalized inverses of A)
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{1,3}-inverses

Suppose Ax = b is inconsistent. It seems reasonable to seek out a vector
in R(A) that is closest to b. In other words, b /∈ R(A), the vector
r(x) = Ax − b, which we call the residual vector, is never zero. We shall
try to minimize the length of this vector in the Euclidean norm.

Statisticians do this all the time under the name “least squares.”

Definition 18.

A vector x0 is called a least square solution of the system of linear
equations Ax = b iff ‖Ax0 − b‖ ≤ ‖Ax − b‖ for all vectors x .

Remarkably, the connection here is with {1, 3}-inverses.
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{1,3}-inverses

The least squares solution is shown below.
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Infinitely many least squares solutions

The least squares solution is the affine space represented by the dashed red
line below. We shall prove later there exists a unique vector of smallest
norm in R(A∗).
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{1,3}-inverses

Theorem 19.

Let A ∈ Cm×n and G ∈ A{1, 3}. Then

1. (I− AG )∗ = I− AG = (I− AG )2.

2. (I− AG )∗A = O.

3. A∗(I− AG ) = O.
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{1,3}-inverses

Theorem 20.

Suppose G ∈ A{1, 3}. Then x0 = Gb is a least squares solution of the
linear system Ax = b. LA-3(P-14)T-11

We have seen that Gb is a least squares solution of Ax = b.

If x1 is a least squares solution, then Ax1 and AGb are of equal distance to
b, which is shown below.

Theorem 21.

Let G ∈ A{1, 3}. Then x1 is a least squares solution of the linear system
Ax = b iff ‖Ax1 − b‖ = ‖AGb − b‖. LA-3(P-15)T-12

Theorem 22.

Let G ∈ A{1, 3}. Then x0 is a least squares solution of Ax = b iff
Ax0 = AGb. LA-3(P-15)T-13
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{1,3}-inverses

A linear system may have many least squares solutions for Ax = b. Any
arbitrary least squares solutions x0 is of the form x0 = Gb + u, where
u ∈ N(A) because ‖A(x0 − Gb)‖ = 0. However, we can describe them all
without finding N(A).

Theorem 23.

Let G ∈ A{1, 3}. Then all least squares solutions of Ax = b are of the
form Gb + (I− GA)z for any arbitrary z . LA-3(P-16)T-14

It is nice that we can charaterize when a least squares solution is unique.
This often happens in satistical examples.

Theorem 24.

Let A ∈ Cm×n and G ∈ A{1, 3}. The system of linear equations Ax = b
has a unique least squares solution iff rank(A) = n. LA-3(P-17)T-15
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Unique least squares solution

Theorem 25.

Consider the system Ax = b. The following are equivalent:

1. Ax = b has a unique least squares solution.

2. The columns of A are linearly independent.

3. rank(A) = n.

4. A∗A is invertible.

5. A has full column rank.
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Properties of {1,3}-inverses

1. Consider the system


1 0 2
0 1 −2
2 2 0
1 2 −2


x
y
z

 =


−1
−1
2
1

. Verify that this

system is inconsistent. Find all least squares solutions.
2. Prove that if G ∈ AA∗{1, 2}, then A∗G is a {1, 3}-inverse of A.
3. Prove that x0 is the minimum norm least squares solutions of Ax = b

iff
(a) ‖Ax0 − b‖ ≤ ‖Ax − b‖, and
(b) ‖x0‖ ≤ ‖x‖ for any x 6= x0.

4. Computing a least squares solution: Prove that x0 is the least
squares solutions of Ax = b iff x0 is a solution to the always
consistent (prove this) system A∗Ax = A∗b. These equations are
often called the normal equations. Prove this latter is equivalent to
Ax − b ∈ N(A∗).

5. Suppose A = FG is a full rank factorization. Then the normal
equations are equivalent to F ∗Ax = F ∗b.
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Examples

Example 26 (Unique least squares solution).

Consider the system Ax = b where A =

0 1
1 1
2 1

 and b =

6
0
0

.

The only least squares solution is

(
−3
5

)
.

Example 27 (Infinitely least squares solutions).

Consider the system Ax = b where A =

1 0 1
1 1 −1
1 2 −3

 and b =

6
0
0

.

There are infinitely many least squares soluions. Each least squares

solution is of the form

−a + 5
2a− 3

a

, for some scalar a.
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Given an m × n complex matrix A, we now discuss the

{1, 4}-inverses of A.
(minimum norm generalized inverses of A)
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{1,4}-inverses

We have seen that a consistent system of linear equations Ax = b can
have many solutions; indeed, there can be infinitely many solutions and
they form an affine subspace.

Now we are in a position to ask, among all of these solutions, is there a
shortest one? That is, there is a solution of minimum norm?

The first question is, which norm? For this section, we choose our familiar
Euclidean norm, ‖x‖2 = trace(x∗x)1/2.

Definition 28.

We say that x0 is a minimum norm solution of Ax = b iff x0 is a solution
and ‖x0‖ ≤ ‖x‖ for all solutions x of Ax = b.
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{1,4}-inverses

Theorem 29.

Let G ∈ A{1, 4}. Then

1. (I− GA)∗ = (I− GA) = (I− GA)2.

2. A(I− GA)∗ = O.

3. (I− GA)A∗ = O.
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{1,4}-inverses

It turns out that the minimum norm issue is actually intimately connected
with {1, 4}-inverses.

Theorem 30.

Suppose Ax = b is consistent and G ∈ A{1, 4}. Then Gb is the unique
solution of minimum norm. LA-3(P-17)T-16

Theorem 31 (Converse part).

Suppose H ∈ Cn×m and, whenever Ax = b is consistent, AHb = b and
‖Hb‖ < ‖z‖ for all solutions z other than Hb; then H ∈ A{1, 4}.

Thus, {1, 4}-inverses are characterized by giving the minimum norm
solutions.
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Properties of {1,4}-inverses

1. Suppose G ∈ A{1, 4}. Prove that A{1, 4} = {H : HA = GA}.
2. Suppose G ∈ A{1, 4}. Prove that

A{1, 4} = {G + W (I− AG ) : W is arbitrary }.
3. Let u and v in R(A∗) with Au = Av . Prove that u = v .

P. Sam Johnson Introduction to Moore-Penrose Inverse 60/110



Given an m × n complex matrix A, we now discuss the

{1, 2, 3, 4}-inverse of A.
(Moore-Penrose inverse of A)
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The Moore-Penrose Inverse

We now develop a key concept, the Moore-Penrose inverse (MP
inverse), also known as the pseudoinverse.

Theorem 32 (the uniqueness theorem).

If A ∈ Cm×n has a Moore-Penrose inverse at all, it must be unique. That
is, there can be only one simultaneous solution to the four MP-equations.
LA-3(P-19)T-18

In view of the uniqueness theorem for Moore-Penrose inverse, we use the
notation A† for the unique solution of the four MP-equations (when the
solution exists, of course, which is yet to be established).
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Full Rank Factorization

Our approach to the Moore-Penrose inverse is to use the idea of full rank
factorization; we build up from the factors of a full rank factroization.

Every non-null matrix can be written as a product of two full rank
matrices. Matrices which are of full rank (either full row rank or full
column rank) have several nice properties.

If A has column rank r , then

any r linearly independent columns of A form a basis for R(A),

every maximal linearly independent set of columns of A contains
exactly r vectors,

any r columns of A which generate R(A) form a basis of R(A).
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Full Rank Factorization

Definition 33.

An m × n matrix A is said to be of full row rank if its rows are linearly
independent, that is, it its rank is m. Similarly A is said to be of full
column rank if its columns are linearly independent.

A left inverse of a matrix A is any matrix B such that BA = I. A right
inverse of A is any matrix C such that AC = I.

A matrix B is said to be an inverse of A if it is both a left inverse and a
right inverse of A.
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Full Rank Factorization

Theorem 34.

Let A ∈ Cm×n. Then the following statements are equivalent.

1. A has a right inverse.

2. Right cancellation law: XA = YA⇒ X = Y .

3. XA = 0⇒ X = 0.

4. A is of full row rank.

5. The linear transformation x 7→ Ax is onto.

Question: If A has a right inverse, how many right inverses does A have ?
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Full Rank Factorization

Theorem 35.

Let A ∈ Cm×n. Then the following statements are equivalent.

1. A has a left inverse.

2. Left cancellation law: AX = AY ⇒ X = Y .

3. AX = 0⇒ X = 0.

4. A is of full column rank.

5. The linear transformation f : x 7→ Ax is one-to-one.

P. Sam Johnson Introduction to Moore-Penrose Inverse 66/110



Full Rank Factorization

Theorem 36.

If a matrix A has a left inverse B and a right inverse C , then the following
are equivalent.

1. A is square.

2. B = C .

3. A has a unique left inverse, a unique right inverse and a unique
inverse.
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Full Rank Factorization

If a matrix A has an inverse, then A−1 is unique, A is square and
AA−1 = A−1A = I .

Theorem 37.

Let A be a square matrix of order n. Then the following statements are
equivalent:

1. A has a right inverse.

2. rank of A is n.

3. A has a left inverse.

4. A has an inverse.
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Full Rank Factorization

Definition 38.

Let A be a m × n matrix with rank r ≥ 1. Then (P,Q) is said to be a
rank-factorization of A if P is of order m × r , Q is of order r × n and
A = PQ.

Theorem 39.

Every non-null matrix has a rank-factorization.

Proof. Let A be a m × n matrix with rank r .

Let B = [x1 : x2 : · · · : xr ] be an m × r matrix whose columns form a basis
of R(A). Then for each j = 1, 2, . . . , n, each column of A, A∗j is a linear
combination of the columns of B, so there exists an r × 1 vector yj such
that A∗j = Byj . Ai∗ denotes the i-th row of A and A∗j denotes the j-th
column of A.
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Full Rank Factorization

Now

A = [A∗1 : · · · : A∗n]

= [By1 : · · · : Byn]

= B[y1 : · · · : yn]

= BC

where C = [y1 : · · · : yn].

A null matrix cannot have a rank-factorization since there cannot
be a matrix with 0 rows.

Rank-factorization of a matrix is not unique. The choice of the
matrix B is not unique because the columns of B are coming from
the column basis of A.
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When a factorization is a rank-factorization?

Theorem 40.

Let A = PQ where P is a m × k matrix and Q a k × n matrix. Then the
rank of A is at most k .
Moreover, the following are equivalent:

the rank of A is k .

(P,Q) is a rank-factorization of A.

P is of full column rank and Q is of full row rank.

the columns of P form a basis of the column space of A.

the row of Q form a basis of the row space of A.
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Full Rank Factorization

Corollary 41.

If (P,Q) is a rank-factorization of A then R(P) = R(A),
row space(Q) = row space(A) and N(Q) = N(B).

Theorem 42.

If A = A2, rank of A equals trace of A.

Proof. The result is trivial if the rank r of A is 0, so let r ≥ 1.

Let (P,Q) be a rank-factorization of A. Then PQPQ = PQ = PIrQ.

Since P is of full column rank and Q is of full row rank, left and
cancellation laws are applied, we get PA = Ir .

Hence rank of A = r = tr(Ir ) = tr(QP) = tr(PQ) = tr(A).
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Full Rank Factorization

Finding a rank-factorization of a matrix A of rank r is easy when A
is represented in the following nice form.

Theorem 43.

Let A be an m × n matrix of rank r ≥ 1. Then there exist permutation
matrices P and Q such that

A = P

(
B BC
DB DBC

)
Q

where B is invertible matrix of order r and, C and D are some matrices of
orders r × (n − r) and (m − r)× r respectively.
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Full Rank Factorization

When a matrix A in the above form, can be factorized as A = P1Q1 where

P1 = P

(
B
DB

)
and Q1 =

(
Ir : C

)
Q.

Since P1 is of order m × r , it follows that (P1,Q1) is a rank-factorization
of A.
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Examples : Moore-Penrose Inverse

1. Clearly I†n = In for any n and O†m×n = On×m.

2. Suppose A is square and invertible. Then A−1 = A†.

3. Suppose P is a matrix such that P = P∗ = P2 (called a projection
matrix, also known as a Hermitian idempotent). Then P = P†.

4. Let D be a diagonal matrix, say D = diag(d1, d2, . . . , dn). Then

D† = diag(d†1 , d
†
2 , . . . , d

†
n), where

λ+ =

{
0, if λ = 0

λ−1, if λ 6= 0
.

5. Let A =


a1

a2
...
an

. If A 6= 0, then A† = 1
A∗AA

∗.
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The Moore-Penrose Inverse

We now see that for matrices of full row or column rank, the
Moore-Penrose inverse picks out a specific left (right) inverse of the matrix
as shown below.

Theorem 44.

1. If F ∈ Cm×r
r (F has full column rank), then F † = (F ∗F )−1F ∗.

2. If G ∈ Cr×n
r (G has full row rank), then G † = G ∗(GG ∗)−1.

Note that F †F = Ir and GG † = Ir .
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The Moore-Penrose Inverse

For an arbitrary matrix A ∈ Cm×n
r with r > 0, we shall show how to

construct the Moore-Penrose Inverse.

Theorem 45 (Greville and A.S. Householder).

Let A ∈ Cm×n
r . Take any full rank factorization of A = FG . Then

A† = G †F †. In otherwords, A† = G ∗(GG ∗)−1(F ∗F )−1F ∗.

Moreover, AA† = FF † and A†A = G †G , where A = FG is any full rank
factorization of A.
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Some More Properties of Moore-Penrose Inverse

We have already noted that a matrix A in Cm×n
r with r > 0 has infinitely

many full rank factorizations. We even showed how to produce an infinite
collection using invertible matrices. We show next that this is the only way
to get full rank factorizations.

Theorem 46.

Every matrix A ∈ Cm×n
r with r > 0 has infinitely many full rank

factorizations.
However, if A = FG = F1G1 are two full rank factorizations of A, then
there exists an invertible matrix R in Cr×r such that F1 = FR and
G1 = R−1G .
Moreover, (R−1G )† = G †R and (FR)† = R−1F †.

Hence A = F1G1 = (FR)(R−1G ). So,
A† = (R−1G )†(FR)† = G †RR−1F † = G †F †.
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Some More Properties of Moore-Penrose Inverse

Let A ∈ Cm×n
r . Then the following are true.

1. (AA†)2 = AA† = (AA†)∗.

2. (Im − AA†)2 = (Im − AA†) = (Im − AA†)∗.

3. (A†A)2 = A†A = (A†A)∗.

4. (In − A†A)2 = (In − A†A) = (In − A†A)∗.

5. (Im − AA†)A = Om×n.

6. (In − A†A)A† = On×m.

7. A†† = A.

8. (A∗)† = (A†)∗.

9. (A∗A)† = A†A∗†.

10. A∗ = A∗AA† = A†AA∗.

11. A† = (A∗A)†A∗ = A∗(AA∗)†.

12. (λA)† = λ†A†.
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Some More Properties of Moore-Penrose Inverse

1. Let A = FG be a full rank factorization of A. Prove that
F †A = G , FF †A = A, AG † = F and AG †G = A.

2. Suppose AL is a left inverse of A — that is, ALA = I.
Is AL = A† necessarily true?
Suppose A∗A = I. What can you say about A†?

3. Suppose A2 = A in Cn×n. Use a full rank factorization of A to prove
that rank (A) = trace(A) (i.e., the rank of A is just the trace of A
when A is an idempotent matrix).

4. Prove that the row space of A† is equal to the row space of A∗.

5. Prove that the column space of A† is equal to the column space of A∗

and the column space of A†A.

6. Prove that A,A∗,A†, and A†∗ all have the same rank.

7. Is A{2, 3, 4} ever empty for some weird matrix A?
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Some More Properties of Moore-Penrose Inverse

1. Prove the following:

AA†A†∗ = A†∗

A†∗A†A = A†∗

A∗†A∗A = A

AA∗A∗† = A

A∗A†∗A† = A†

A†A†∗A∗ = A†.

2. Prove
(AA∗)† = A†∗A†, (A∗A)† = A†A†∗ = A†A∗†

and
(AA∗)†(AA∗) = AA†.
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Some More Properties of Moore-Penrose Inverse

1. Prove
A = AA∗(A†)∗ = (A†)∗A∗A = AA∗(AA∗)†A

and
A∗ = A∗AA† = A†AA∗.

2. Prove A† = A†(A†)∗A∗ = A∗(A†)∗A†.

3. Prove A† = (A∗A)†A∗ = A∗(AA∗)† so that AA† = A(A∗A)†A∗.

4. Show that if A =
∑

At where A∗i Aj = O whenever i 6= j . then

A† =
∑

A†i .

5. Prove that all the following matrices have the same rank:
A,A†,AA†,A†A,AA†A, and A†AA†. The rank is trace(AA†).

6. Prove that (−A)† = −A†.
7. Suppose A is n ×m and S is m ×m invertible. Prove that

(AS)(AS)† = AA†.
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Some More Properties of Moore-Penrose Inverse

1. Suppose A∗A = AA∗. Prove that A†A = AA† and for any natural
number n,

(An)† = (A†)n.

What can you say if A = A∗?
2. Prove that A† = A∗ if and only if A∗A is idempotent.

3. If A =

[
B O
O C

]
, find a formula for A†.

4. Suppose A is a matrix and X is a matrix such that

AXA = A,XAX = X and AX = XA.

Prove that if X exists, it must be unique.
5. Let A = FG be a full rank factorization of A in Cm×n

r . Prove that
F ∗AG ∗ is invertible and A† = G ∗(F ∗AG ∗)−1F ∗.
(Hint: First prove that F ∗AG ∗ is in fact invertible.) Note
F ∗AG ∗ = (F ∗F )(GG ∗) and those two matrices are r × r of rank r
hence invertible. Then (F ∗AG ∗)−1 = (GG ∗)−1(F ∗F )−1.
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Some More Properties of Moore-Penrose Inverse

1. Let x =

x1
...
xn

 and y =

y1
...
yn

. Show (xy∗)† = (x∗x)†(y∗y)†yx∗.

2. Find the MP inverse of a 2× 2 matrix

[
a b
c d

]
.

3. Find examples of matrices A and B with (AB)† = B†A† and A and B
with (AB)† 6= B†A†. Then prove Greville’s [1996] result that
(AB)† = B†A† iff A†A and BB† commute.

4. Find

0 1 0
0 0 1
0 0 0

†.
5. Remember the matrix units Eij? What is E †ij?
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Some More Properties of Moore-Penrose Inverse

1. Find necessary and sufficient conditions for A† = A.

2. Prove that the following statements are equivalent for m × n matrices
A and B:

(i) Col

[
A

A†A

]
= Col

[
B

B†B

]
(ii) Col

[
A

A∗A

]
= Col

[
B

B∗B

]
(iii) A = B.

P. Sam Johnson Introduction to Moore-Penrose Inverse 85/110



Some More Properties of Moore-Penrose Inverse

1. In this exercise, we introduce the idea of a circulant matrix. An
n × n matrix A is called a circulant matrix if its first row is arbitrary
but its subsequent rows are cyclical permutations of the previous row.
So, if the first row is (a1a2a3 · · · an), the second row (ana1a2 · · · an−1),
and the last row is (a2a3a4 · · · ana1). There are entire books written
on these kinds of matrices. Evidently, if you know the first row, you
know the matrix. Write a typical 3× 3 circulant matrix. Is the identity
matrix a circulant matrix? Let C be the circulant matrix whose first
row is (0100· · · 0). Prove that all powers of C are also circulant
matrices. Moreover, prove that if A is any circulant matrix with first
row (a1a2a3 · · · an), then A = a1I + a2C + a3C

2 + · · ·+ anC
n−1.

2. Continuing the problem above. prove that A is a circulant matrix iff
AC = CA.

3. Suppose A is a circulant matrix. Prove that A† is also circulant and
A† commutes with A.
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Some More Properties of Moore-Penrose Inverse

1. (Cline 1964) If AB is defined, prove that (AB)† = B†1A
†
1 where

AB = A1B1, B1 = A†AB and A1 = AB1B
†
1 .

2. If rank(A) = 1, prove that A† = (tr(AA∗)−1)A∗.

3. Prove that AB = O implies B†A† = O.

4. Prove that A∗B = O iff A†B = O.

5. Suppose A∗AB = A∗C . Prove that AB = AA†C .

6. Suppose BB∗ is invertible. Prove that (AB)(AB)† = AA†.

7. Suppose that AB∗ = O. Prove that
(A + B)† = A† + (In − A†B)[C † + (I− C †C )MB∗(A†)∗A†(I− BC †)]
where C = (Im − AA†)B and
M = [In + (In − C †C )B∗(A†)A†B(In − C †C )]−1.
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Some More Properties of Moore-Penrose Inverse

1. Prove that

 A
· · ·
B

† = [A† − TBA†|T ] where

T = E † + (In − E †B)A†(A†)∗B∗K (Ip − EE †) with E = B(In − A†A)
and K = [Ip + (Ip − EE †)BA†(A†)∗B∗(I− EE †)]−1.

2. Prove that [A : B]† =

[
A† − A†B(C † + D)

C † + D

]
where C = (Im − AA†)B

and D = (Ip − C †C )[Ip + (Ip − C †C )B∗(A†)∗A†B(Ip −
C †C )]−1B∗(A†)∗A†(Im − BC †).
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Some More Properties of Moore-Penrose Inverse

1. Prove Greville’s [1966] results: (AB)† = B†A† iff any one of the
following holds true:

(a) A†ABB∗A∗ = BB∗A∗ and BB†A∗AB = A∗AB.
(b) A†ABB∗ and A∗ABB† are self adjoint.
(c) A†ABB∗A∗ABB† = BB∗A∗A.
(d) A†AB = B(AB)†AB and BB†A∗ = A∗AB(AB)†.

2. Suppose A is m × n and B is n × p and rank(A) = rank(B) = n.
Prove that (AB)† = B†A†.
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Solving Consistent Systems of Linear Equations

Recall that {1}-inverses are the “equation solvers.” We have established
the consistency condition:Ax = b is consistent iff AGb = b for some
G ∈ A{1}.

In this case, all solutions can be described by x = Gb + (I− GA)z , where
z is arbitray in Cm.

The first thing we establish is that there is, in fact, a minimum norm
solution to any consistent system of linear equations and it is
unique.

Theorem 47.

Suppose Ax = b is a consistent system of linear equations (i.e.,
b ∈ R(A)). Then there exists a unique solution of Ax = b of minimum
norm. In fact, it lies in R(A∗). LA-3(P-17)T-16+R-17
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{1,3}-inverses

We proved in Theorem 47 that for every b ∈ R(A), there exists a unique
element A†b ∈ R(A∗) which gives the unique norm solution for the system
Ax = b.

Theorem 48 (Moore-1935, Penrose-1955).

For every matrix A, there exists a unique matrix A† : R(A)→ R(A∗) such
that AA† = PR(A) and A†A = PR(A∗).
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{1,3}-inverses

The least squares solution is shown below.
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{1,3}-inverses

The least squares solution is the affine space represented by the dashed red
line below.

P. Sam Johnson Introduction to Moore-Penrose Inverse 93/110



Solving Consistent Systems of Linear Equations

With the Moore-Penrose inverse in hand, we consider an arbitrary system
of linear equations Ax = b.

Theorem 49 (consistent system).

Ax = b has a solution iff AA†b = b.
If a solution exists at all, every solution is of the form

x = A†b + (I− A†A)w ,

where w is an arbitray matrix.
Indeed, a consistent system always has A†b as a particular solution.
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Solving Inconsistent Systems of Linear Equations

Consider the linear system Ax = b. There can be many least squares
solutions (it certainly happens, when rank(A) = n, or A has no column
rank) to an inconsistent system Ax = b (consistency condition fails,
AGb 6= b) of linear equations.

We may ask, among all of these least squares solutions, is there one only
element of minimum norm?

Yes. A†b is the only one vector which has minimum norm, as shown in the
following theorem.

Theorem 50 (inconsistent system).

Among the least squares solutions of Ax = b, A†b is the only one vector of
minimum norm.

A†b is called the best approximate solution of Ax = b.
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Greatness of Moore-Penrose inverse

When Ax = b has a solution, A†b is the unique solution of
minimum norm.

When Ax = b does not have a solution, A†b is the unique least
squares solution of minimum norm.

Theorem 51.

If G has the property that Gb is the minimum norm least squares solution
for all b, then G = A†.
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Example

Example 52.

Consider the system

1 1
1 −1
0 1

(x
y

)
=

 1
0

3/4

 = b.

A full rank factorization of A is given by A = FG =

1 1
1 −1
0 1

(1 0
0 1

)
.

So A† =

(
1/2 1/2 0
1/3 −1/3 1/3

)
. The consistency condition AA†b = b fails,

so the system is inconsistent.

The best approximate solution is x0 = A†b =

(
1/2

7/12

)
.
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Observations

{1, 3}-inverses of G have the property that no matter which one you
choose, AG is always the same, namely AA†. In fact, more can be said.

Theorem 53.

G ∈ A{1, 3} iff AG = AA†. In particular, if G ∈ A{1, 3}, then
Ax0 = AGb = AA†b, for any least squares solution x0 of Ax = b, by
Theorem 21.

{1, 4}-inverses of G have the property that no matter which one you
choose, GA is always the same, namely A†A. In fact, more can be said.

Theorem 54.

G ∈ A{1, 4} iff AG = A†A. In particular, if G ∈ A{1, 4}, then Gb = A†b,
for any b ∈ R(A).
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Exercises

This exercise refers back to the Hermite echelon form. Suppose we desire the solutions of
Ax = b where A is square but not necessarily invertible. We have showed how to use the
Moore-Penrose inverse to describe all solutions to Ax = b if it exists. In this exercise, we
consider a different approach. First form the augmented matrix [A | b]. There is an invertible
matrix S such that SA = H = HEF (A) so form [A | b]→ [SA | Sb] = [H | Sb].

(a) Prove that rank (A) = rank(H) = the number of ones on the diagonal of H.

(b) Prove that Ax = b is consistent iff Sb has nonzero components only in the rows where H
has ones.

(c) If Ax = b is consistent, prove Sb is a particular solution to the system.

(d) Prove that if H has r ones down its diagonal, then I− SA has exactly n − r nonzero
columns and these nonzero columns span N(A) and hence form a basis for N(A).

(e) Prove that all solutions of Ax = b are described by x = Sb + (I− SA)D, where D is a
diagonal matrix containing n − r free parameters.
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Connection of the {2}-inverse to other generalized inverses
of a matrix

Let’s fix an m-by-n matrix A of rank r over C. Now choose arbitrary
matrices E in Cn×k and H in Ck×m and form the k-by-k matrix HAE .

Suppose A = FG is a full rank factorization of A. Note HF is k-by-r and
GE is r -by-k .

Theorem 10.

Suppose k = r = rank(A). Then HAE is invertible iff HF and GE are
invertible.

Theorem 11.

Let k = r = rank(A) and choose H and E so that HAE is invertible. Then
X = E (HAE )−1H is a {1, 2}-inverse of A.
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Connection of the {2}-inverse to other generalized inverses
of a matrix

Theorem 12.

With the hypotheses of the previous theorem, add that we choose H = F ∗.
Then X is a {1, 2, 3}-inverse of A.

Theorem 13.

In the previous theorem, choose E = G ∗ instead of H = F ∗. Then X is a
{1, 2, 4}-inverse of A.

Theorem 14.

In the previous theorem, choose both H = F ∗ and E = G ∗. Then X = A†.
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Connection of the {2}-inverse to other generalized inverses
of a matrix

Above we wrote {2}-inverses as X = E (HAE )−1H. But how did we know
we could ever find any matrices E and H so that HAE is invertible?

We have the following theorem.

Theorem 15.

Let A ∈ Cm×n. Then X is a {2}-inverse of A if and only if there exists E
and H where E has full column rank, H has full row rank,
Col(X ) = Col(E ), Col(X ∗) = Col(H∗), HAE is invertible, and
X = E (HAE )−1H.

Exercise 16.

Suppose A = FG is a full rank factorization of A. Prove that F (GF )−1G
and F (GF )†G are {2}-inverses of A.
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Constructing Other Generalized Inverses

We take a constructive approach to build a variety of generalized inverses
of a given matrix.

The approach we adopt goes back to the fundumental idea of reducing a
matrix to row echelon form.

1. Given A in Cm×n
r , form RA =

G
. . .
O

 . Then Ag1 =
[
G† + (I−G†G)X

...V
]
R ∈ A{1}, where

X and V are arbitrary and G† = G∗(GG∗)−1, we can see that Ag1 ∈ A{1}.

2. Ag14 =

[
G†

...V

]
R ∈ A{1, 4}, where X was chosen to be O and V is still arbitrary. We can

see that Ag14 ∈ A{1, 4}.

3. Ag124 =

[
G†

...G†W

]
R ∈ A{1, 2, 4}, where V is chosen as G†W , where W is arbitrary. We

can see that Ag124 ∈ A{1, 2, 4}.
4. Ag1234 = G†F †, where F = AG† and F † = (F∗F )−1F∗. We can see that Ag1234 is the

Moore-Penrose inverse of A.
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Now let’s play the same game with A∗ instead of A.

Reasoning as before, we see the special choice V = WF † yields

Ag123 = S

 F †

. . .
WF †

 as a {1, 2, 3}-inverse of A.

To get A†, we look at G = F †A = F †
[
F

...O
]
S−1 =

[
F †F

...O
]S1

. . .
S2

 = S1,

which has full row rank so G † = G ∗(GG ∗)−1.

One can verify that A† can be reproduced as above.
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Constructing Other Generalized Inverses

1. Given A in Cm×n
r , form A∗ = (S∗)−1

F∗. . .
O

 to get A = [F
...O]S−1.

Then

Ag1 = S

F † + X (I− FF †)
...........................

V

 ∈ A{1}, where X and V are arbitrary of appropriate size

and F † = (F∗F )−1F∗.

2. Ag13 = S

F †. . .
V

 ∈ A{1, 3}, where X was chosen to be O and V is still arbitrary.

3. Ag123 = S

 F †

. . .
WF †

 ∈ A{1, 2, 3}, where V is chosen as WF †, where W is arbitrary.

4. Ag1234 = A† = G†F †, where G = F †A and G† = G∗(GG∗)−1.
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Constructing Other Generalized Inverses of a Specified
Rank

We indicate next how to get generalized inverses of a specified rank.

We use the notation A{i , j , k , `}s for the set of all {i , j , k, `}-inverses of
rank s. We begin with {2}-inverses.

Theorem 17 (G. W. Stewart, R.E. Fundrelic).

Let A ∈ Cm×n
r and 0 < s ≤ r . Then A{2}s = {X |X = YZ , where

Y ∈ Cn×s ,Z ∈ Cs×m,ZAY = Is}.

Corollary 18.

Let A ∈ Cm×n
r . Then A{1, 2} = {FG |F ∈ Cn×r ,G ∈ Cr×m,GAF = Ir}

Corollary 19.

If GAF = Is , then G ∈ (AF ){1, 2, 4}.
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Constructing Other Generalized Inverses

Theorem 20.

Let A ∈ Cm×n
r and 0 < s < r . Then A{2, 3}s = {Y (AY )† | AY ∈ Cm×s

s }

Theorem 21.

Let A ∈ Cm×n
r and 0 < s ≤ r . Then A{2, 4}s = {(YA)†Y | YA ∈ Cs×n

s }.
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Exercises

1. Prove that A{1, 2, 3, 4} ⊆ A{1, 2, 3} ⊆ A{1, 2} ⊆ A{1}, with equality
holding throughout if and only if A is invertible.

2. Suppose G is a {1, 2, 3}-inverse of A. Prove
rank(G ) = rank(A†) = rank(A).

3. Prove that the following statements are all equivalent:
(i) A∗B = O.
(ii) GB = O, where G ∈ A{1, 2, 3}.
(iii) HA = O, where H ∈ B{1, 2, 3}.

4. Prove that a matrix G is in A{1, 2, 3} if and only if G = HA∗, where
H is in A∗A{1}.

5. Prove that a matrix G is in A{1, 2, 4} if and only if G = A∗H, where
H is in A∗A{1}.

6. Let B = A∗(AA∗)g12 . Prove that B is a {1, 2, 4}-inverse of A.

7. Let C = (A∗A)g12A∗. Prove that C is a {1, 2, 3}-inverse of A.

8. Let B ∈ A{1, 2, 4} and C ∈ A{1, 2, 3}. Prove that BAC = A†. Is it
good enough to assume B ∈ A{1, 4} and C ∈ A{1, 3}?
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Exercises

1. Suppose A ∈ Cm×n
r and SAT =

[
B O
O O

]
, where B ∈ Cr×r is invertible. Then let

G = TNS , where N =

[
Z X
Y W

]
.

Then prove

(i) G ∈ A{1} iff Z = B−1.
(ii) G ∈ A{1, 2} iff Z = B−1 and W = YBX .
(iii) G ∈ A{1, 2, 3} iff Z = B−1, X = −B−1S1S2, and W = −YS1S2,

where S =

S1

· · ·
S2

.

(iv) G ∈ A{1, 2, 4} iff Z = B−1, Y = −T2 + T1B
−1, and

W = −T2 + T1X , where T = [T1

...T2].
(v) G = A† iff Z = B−1, X = −B−1S1S

†
2 , Y = −T †2 T1B

−1, and

W = T2 + T1B
−1S1S

†
2 .

(vi) Let G ∈ A∗A{1}. Prove that GA∗ ∈ A{1, 2, 3}. Let H ∈ AA∗{1}.
Prove that A∗H ∈ A{1, 2, 4}.

2. (Urguhart) Let G ∈ A{1, 4} and H ∈ A{1, 3}. Prove that GAH = A†.
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